Synthesis and Cure Kinetics of Liquefied Wood/Phenol/ Formaldehyde Resins
نویسندگان
چکیده
Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three-necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac-type liquefied wood/phenol/formaldehyde (LWPF) resins: LWPF1 (the atmospheric reactor) and LWPF2 (the sealed reactor). The LWPF1 resin had a higher solid content and higher molecular weight than the LWPF2 resin. The cure kinetic mechanisms of the LWPF resins were investigated with dynamic and isothermal differential scanning calorimetry (DSC). The isothermal DSC data indicated that the cure reactions of both resins followed an autocatalytic mechanism. The activation energies of the liquefied wood resins were close to that of a reported lignin–phenol–formaldehyde resin but were higher than that of a typical phenol formaldehyde resin. The two liquefied wood resins followed similar cure kinetics; however, the LWPF1 resin had a higher activation energy for rate constant k1 and a lower activation energy for rate constant k2 than LWPF2. 2008 Wiley Periodicals, Inc. J Appl Polym Sci 108: 1837–1844, 2008
منابع مشابه
Wood Liquefaction and its Application to Novolac Resin
Wood liquefaction was conducted using phenol as a reagent solvent with a weak acid catalyst in two different reactors: (Alma et al., 1995a.) an atmospheric glass reactor and (Alma et al., 1995b.) a sealed Parr reactor. Residues were characterized by wet chemical analyses, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). The FT-IR spectra of the liquefied wood residu...
متن کاملCure Kinetics of Aqueous Phenol-Formaldehyde Resins Used for Oriented Strandboard Manufacturing: Effect of Wood Flour
The effect of wood flour on the cure kinetics of commercial phenol-formaldehyde resins used as oriented strandboard face and core adhesives was studied using differential scanning calorimetry. The wood flour did not change the cure mechanism of the face resin, but lowered its cure temperature and activation energy and increased its cure reaction order. For the core resin (CR), the wood flour lo...
متن کاملCharacterization of Phenol-Formaldehyde Resins Modified with Crude Bio-oil Prepared from Ziziphus mauritiana Endocarps
This study was conducted to evaluate the effects of bio-oil incorporation on properties of bio-oil-phenol formaldehyde (BPF) resol resins along with the optimization of petro-phenol substitution level. Crude bio-oil prepared from endocarp shells of Ziziphus mauritiana by direct solvolytic liquefaction (ethanol-water 1:1 wt./wt. at 300 °C) was used to partially substitute the petro-phenol (30% t...
متن کاملSynthesis and Structure Characterization of Phenol-Urea-Formaldehyde Resins in the Presence of Magnesium Oxide as Catalyst
The objective of this research was to provide a useful approach of polymer synthesis for accelerating the fast cure of phenol-urea-formaldehyde (PUF) resin as wood adhesive by optimizing its structure and composition. The PUF resins containing high contents of very reactive groups such as para-methylol groups were synthesized by reacting methylolurea, phenol, and formaldehyde in the presence of...
متن کاملInvestigation of Bio-Composites using Novolac Type Liquefied Wood Resin: Effects of Liquefaction and Fabrication Conditions
Wood liquefaction using an organic solvent and an acid catalyst has long been studied as a novel technique to utilize biomass as an alternative to petroleum-based products. Oxalic acid is a weaker organic acid than a mineral acid and wood liquefaction with oxalic acid as a catalyst will result in a higher amount of wood residue than that with a mineral acid. Yet the wood residue can be used as ...
متن کامل